

powerbox

[image: _images/powerbox.svg]
 [https://pypi.python.org/pypi/powerbox][image: _images/powerbox1.svg]
 [https://travis-ci.org/steven-murray/powerbox][image: _images/badge.svg]
 [https://coveralls.io/github/steven-murray/powerbox?branch=master][image: _images/5853411c78444a5a9c6ec4058c6dbda9.svg]
 [https://www.codacy.com/app/steven-murray/powerbox?utm_source=github.com&utm_medium=referral&utm_content=steven-murray/powerbox&utm_campaign=Badge_Grade]Make arbitrarily structured, arbitrary-dimension boxes and log-normal mocks.

powerbox is a pure-python code for creating density grids (or boxes) that have an arbitrary two-point distribution
(i.e. power spectrum). Primary motivations for creating the code were the simple creation of log-normal mock galaxy
distributions, but the methodology can be used for other applications.

Features

	Works in any number of dimensions.

	Really simple.

	Arbitrary isotropic power-spectra.

	Create Gaussian or Log-Normal fields

	Create discrete samples following the field, assuming it describes an over-density.

	Measure power spectra of output fields to ensure consistency.

	Seamlessly uses pyFFTW if available for ~double the speed.

Installation

Clone/Download then python setup.py install. Or just pip install powerbox.

Acknowledgment

If you find powerbox useful in your research, please cite http://ascl.net/1805.001

QuickLinks

	Docs: https://powerbox.readthedocs.io

	Quickstart: http://powerbox.readthedocs.io/en/latest/demos/getting_started.html

Contents

	Examples
	Getting Started with Powerbox

	Create a log-normal mock dark-matter distribution

	Changing Fourier Conventions

	License

	Changelog
	v0.5.3 [22 May 2018]

	v0.5.2 [17 May 2018]

	v0.5.1 [4 May 2018]

	API Summary
	powerbox.powerbox

	powerbox.tools

	powerbox.dft

Indices and tables

	Index

	Module Index

	Search Page

Examples

To help get you started using powerbox, we’ve compiled a few simple examples.
Other examples can be found in the API documentation for each object or by looking at some of the tests.

	Getting Started with Powerbox
	Create a 2D Gaussian field with power-law power-spectrum

	Create a 2D Log-Normal field with power-law power spectrum

	Create some discrete samples on the field

	Check the power-spectrum of the field

	Create a log-normal mock dark-matter distribution

	Changing Fourier Conventions
	Doing the DFT right.

	Using Different Conventions in Powerbox

Getting Started with Powerbox

In [3]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

There are two useful classes in powerbox: the basic PowerBox,
and one for log-normal fields: LogNormalPowerBox. You can import
them like this:

In [1]:

from powerbox import PowerBox, LogNormalPowerBox

Once imported, to see all the options, just use help(PowerBox).

Create a 2D Gaussian field with power-law power-spectrum

For a basic 2D Gaussian field with a power-law power-spectrum, one can
use the following:

In [10]:

pb = PowerBox(N=512, # Number of grid-points in the box
 dim=2, # 2D box
 pk = lambda k: 0.1*k**-2., # The power-spectrum
 boxlength = 1.0, # Size of the box (sets the units of k in pk)
 seed = 1010) # Set a seed to ensure the box looks the same every time (optional)

plt.imshow(pb.delta_x,extent=(0,1,0,1))
plt.colorbar()
plt.show()

[image: ../_images/demos_getting_started_7_0.png]

The delta_x output is always zero-mean, so it can be interpreted
as an over-density field, \(\rho(x)/\bar{\rho} -1\). The caveat to
this is that an overdensity field is physically invalid below -1. To
ensure the physical validity of the field, the option
ensure_physical can be set, which clips the field:

In [11]:

pb = PowerBox(N=512, # Number of grid-points in the box
 dim=2, # 2D box
 pk = lambda k: 0.1*k**-2., # The power-spectrum
 boxlength = 1.0, # Size of the box (sets the units of k in pk)
 seed = 1010, # Set a seed to ensure the box looks the same every time (optional)
 ensure_physical=True) # ** Ensure the delta_x is a physically valid over-density **

plt.imshow(pb.delta_x,extent=(0,1,0,1))
plt.colorbar()
plt.show()

[image: ../_images/demos_getting_started_9_0.png]

If you are actually dealing with over-densities, then this clipping
solution is probably a bit hacky. What you want is a log-normal field…

Create a 2D Log-Normal field with power-law power spectrum

The LogNormalPowerBox class is called in exactly the same way, but
the resulting field has a log-normal pdf with the same power spectrum.

In [12]:

lnpb = LogNormalPowerBox(N=512, # Number of grid-points in the box
 dim=2, # 2D box
 pk = lambda k: 0.1*k**-2., # The power-spectrum
 boxlength = 1.0, # Size of the box (sets the units of k in pk)
 seed = 1010) # Use the same seed as our powerbox

plt.imshow(lnpb.delta_x,extent=(0,1,0,1))
plt.colorbar()
plt.show()

[image: ../_images/demos_getting_started_13_0.png]

Again, the delta_x is zero-mean, but has a longer positive tail due
to the log-normal nature of the distribution. This means it is always
greater than -1, so that the over-density field is always physical.

Create some discrete samples on the field

powerbox lets you easily create samples that follow the field:

In [18]:

fig, ax = plt.subplots(1,2, sharex=True,sharey=True,gridspec_kw={"hspace":0}, subplot_kw={"ylim":(0,1),"xlim":(0,1)}, figsize=(10,5))

Create a discrete sample using the PowerBox instance.
samples = pb.create_discrete_sample(nbar=50000, # nbar specifies the number density
 min_at_zero=True # by default the samples are centred at 0. This shifts them to be positive.
)
ln_samples = lnpb.create_discrete_sample(nbar=50000, min_at_zero=True)

Plot the samples
ax[0].scatter(samples[:,0],samples[:,1], alpha=0.2,s=1)
ax[1].scatter(ln_samples[:,0],ln_samples[:,1],alpha=0.2,s=1)
plt.show()

[image: ../_images/demos_getting_started_17_0.png]

Within each grid-cell, the placement of the samples is uniformly random.
The samples can instead be placed on the cell edge by setting
randomise_in_cell to False.

Check the power-spectrum of the field

powerbox also contains a function for computing the (isotropic)
power-spectrum of a field. This function accepts either a box defining
the field values at every co-ordinate, or a set of discrete samples.
In the latter case, the routine returns the power spectrum of
over-densities, which matches the field that produced them. Let’s go
ahead and compute the power spectrum of our boxes, both from the samples
and from the fields themselves:

In [19]:

from powerbox import get_power

In [24]:

Only two arguments required when passing a field
p_k_field, bins_field = get_power(pb.delta_x, pb.boxlength)
p_k_lnfield, bins_lnfield = get_power(lnpb.delta_x, lnpb.boxlength)

The number of grid points are also required when passing the samples
p_k_samples, bins_samples = get_power(samples, pb.boxlength,N=pb.N)
p_k_lnsamples, bins_lnsamples = get_power(ln_samples, lnpb.boxlength,N=lnpb.N)

Now we can plot them all together to ensure they line up:

In [26]:

plt.plot(bins_field, 0.1*bins_field**-2., label="Input Power")

plt.plot(bins_field, p_k_field,label="Normal Field Power")
plt.plot(bins_samples, p_k_samples,label="Normal Sample Power")
plt.plot(bins_lnfield, p_k_lnfield,label="Log-Normal Field Power")
plt.plot(bins_lnsamples, p_k_lnsamples,label="Log-Normal Sample Power")

plt.legend()
plt.xscale('log')
plt.yscale('log')

[image: ../_images/demos_getting_started_24_0.png]

Create a log-normal mock dark-matter distribution

In [3]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

In this demo, we create a mock dark-matter distribution, based on the
cosmological power spectrum. To generate the power-spectrum we use the
hmf code (https://github.com/steven-murray/hmf).

The box can be set up like this:

In [5]:

from hmf import MassFunction
from scipy.interpolate import InterpolatedUnivariateSpline as spline
import numpy as np
from powerbox import LogNormalPowerBox

Set up a MassFunction instance to access its cosmological power-spectrum
mf = MassFunction(z=0)

Generate a callable function that returns the cosmological power spectrum.
spl = spline(np.log(mf.k),np.log(mf.power),k=2)
power = lambda k : np.exp(spl(np.log(k)))

Create the power-box instance. The boxlength is in inverse units of the k of which pk is a function, i.e.
Mpc/h in this case.
pb = LogNormalPowerBox(N=256, dim=3, pk = power, boxlength= 100.)

Now we can make a plot of a slice of the density field:

In [6]:

plt.imshow(np.mean(pb.delta_x[:100,:,:],axis=0),extent=(0,100,0,100))
plt.colorbar()
plt.show()

[image: ../_images/demos_cosmological_fields_5_0.png]

And we can also compare the power-spectrum of the output field to the
input power:

In [7]:

from powerbox import get_power

p_k, kbins = get_power(pb.delta_x,pb.boxlength)
plt.plot(mf.k,mf.power,label="Input Power")
plt.plot(kbins,p_k,label="Sampled Power")
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()

[image: ../_images/demos_cosmological_fields_7_0.png]

Furthermore, we can sample a set of discrete particles on the field and
plot them:

In [10]:

particles = pb.create_discrete_sample(nbar=0.1,min_at_zero=True)

plt.figure(figsize=(8,8))
plt.scatter(particles[:,0],particles[:,1],s=np.sqrt(100./particles[:,2]),alpha=0.2)
plt.xlim(0,100)
plt.ylim(0,100)
plt.show()

[image: ../_images/demos_cosmological_fields_9_0.png]

Or plot them in 3D!

In [17]:

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(particles[:,0], particles[:,1], particles[:,2],s=1,alpha=0.2)
plt.show()

[image: ../_images/demos_cosmological_fields_11_0.png]

Then check that the power-spectrum of the sample matches the input:

In [19]:

p_k_sample, kbins_sample = get_power(particles, pb.boxlength,N=pb.N)

plt.plot(mf.k,mf.power,label="Input Power")
plt.plot(kbins_sample,p_k_sample,label="Sampled Power Discrete")
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()

[image: ../_images/demos_cosmological_fields_13_0.png]

Changing Fourier Conventions

The powerbox package allows for arbitrary Fourier conventions. Since
(continuous) Fourier Transforms can be defined using different
definitions of the frequency term, and varying normalisations, we allow
any consistent combination of these, using the same parameterisation
that Mathematica uses, i.e.:

\[F(k) = \left(\frac{|b|}{(2\pi)^{1-a}}\right)^{n/2} \int f(r) e^{-i b\mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r}\]

for the forward-transform and

\[f(r) = \left(\frac{|b|}{(2\pi)^{1+a}}\right)^{n/2} \int F(k) e^{+i b\mathbf{k}\cdot\mathbf{r}} d^n \mathbf{k}\]

for its inverse. Here \(n\) is the number of dimensions in the
transform, and \(a\) and \(b\) are free to be any real number.
Within powerbox, \(b\) is taken to be positive.

The most common choice of parameters is \((a,b) = (0,2\pi)\), which
are the parameters that for example numpy uses. In cosmology (a
field which powerbox was written in the context of), a more usual
choice is \((a,b)=(1,1)\), and so these are the defaults within the
PowerBox classes.

In this notebook we provide some examples on how to deal with these
conventions.

Doing the DFT right.

In many fields, we are concerned primarily with the continuous FT, as
defined above. However, typically we must evaluate this numerically, and
therefore use a DFT or FFT. While the conversion between the two is
simple, it is all too easy to forget which factors to normalise by to
get back the analogue of the continuous transform.

That’s why in powerbox we provide some fast fourier transform
functions that do all the hard work for you. They not only normalise
everything correctly to produce the continuous transform, they also
return the associated fourier-dual co-ordinates. And they do all this
for arbitrary conventions, as defined above. And they work for any
number of dimensions.

Let’s take a look at an example, using a simple Gaussian field in 2D:

\[f(x) = e^{-\pi r^2},\]

where \(r^2 = x^2 + y^2.\)

The Fourier transform of this field, using the standard mathematical
convention is:

\[\int e^{-\pi r^2} e^{-2\pi i k\cdot x} d^2x = e^{-\pi k^2},\]

where \(k^2 = k_x^2 + k_y^2\).

In [2]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from powerbox import fft,ifft
from powerbox.powerbox import _magnitude_grid

In [7]:

Parameters of the field
L = 10.
N = 512
dx = L/N

x = np.arange(-L/2,L/2,dx)[:N] # The 1D field grid
r = _magnitude_grid(x,dim=2) # The magnitude of the co-ordinates on a 2D grid
field = np.exp(-np.pi*r**2) # Create the field

Generate the k-space field, the 1D k-space grid, and the 2D magnitude grid.
k_field, k, rk = fft(field,L=L, # Pass the field to transform, and its size
 ret_cubegrid=True # Tell it to return the grid of magnitudes.
)

Plot the field minus the analytic result
plt.imshow(np.abs(k_field)-np.exp(-np.pi*rk**2),extent=(k.min(),k.max(),k.min(),k.max()))
plt.colorbar()

Out[7]:

<matplotlib.colorbar.Colorbar at 0x7fcedc018690>

[image: ../_images/demos_dft_6_1.png]

We can now of course do the inverse transform, to ensure that we return
the original:

In [10]:

x_field, x_, rx = ifft(k_field, L = L, # Note we can pass L=L, or Lk as the extent of the k-space grid.
 ret_cubegrid=True)

plt.imshow(np.abs(x_field)-field,extent=(x.min(),x.max(),x.min(),x.max()))
plt.colorbar()
plt.show()

[image: ../_images/demos_dft_8_0.png]

We can also check that the xgrid returned is the same as the input
xgrid:

In [11]:

x_ -x

Out[11]:

array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

Changing the convention

Suppose we instead required the transform

\[\int e^{-\pi r^2} e^{-i \nu \cdot x} d^2x = e^{-\nu^2/4\pi}.\]

This is the same transform but with the Fourier-convention
\((a,b) = (1,1)\). We would do this like:

In [14]:

Generate the k-space field, the 1D k-space grid, and the 2D magnitude grid.
k_field, k, rk = fft(field,L=L, # Pass the field to transform, and its size
 ret_cubegrid=True, # Tell it to return the grid of magnitudes.
 a=1,b=1 # SET THE FOURIER CONVENTION
)

Plot the field minus the analytic result
plt.imshow(np.abs(k_field)-np.exp(-1./(4*np.pi)*rk**2),extent=(k.min(),k.max(),k.min(),k.max()))
plt.colorbar()

Out[14]:

<matplotlib.colorbar.Colorbar at 0x7fcec6148e50>

[image: ../_images/demos_dft_13_1.png]

Again, specifying the inverse transform with these conventions gives
back the original:

In [15]:

x_field, x_, rx = ifft(k_field, L = L, # Note we can pass L=L, or Lk as the extent of the k-space grid.
 ret_cubegrid=True,
 a=1,b=1
)

plt.imshow(np.abs(x_field)-field,extent=(x.min(),x.max(),x.min(),x.max()))
plt.colorbar()
plt.show()

[image: ../_images/demos_dft_15_0.png]

Mixing up conventions

It may be that sometimes the forward and inverse transforms in a certain
problem will have different conventions. Say the forward transform has
parameters \((a,b)\), and the inverse has parameters
\((a',b')\). Then first taking the forward transform, and then
inverting it (in \(n\)-dimensions) would yield:

\[\left(\frac{b'}{b(2\pi)^{a'-a}}\right)^{n/2} f\left(\frac{b'r}{b}\right),\]

and doing it the other way would yield:

\[\left(\frac{b}{b'(2\pi)^{a'-a}}\right)^{n/2} F\left(\frac{bk}{b'}\right).\]

The fft and ifft functions handle these easily. For example, if
\((a,b) = (0,2\pi)\) and \((a',b') = (0,1)\), then the 2D
forward-then-inverse transform should be

\[f(r/(2\pi))/ 2\pi,\]

and the inverse-then-forward should be

\[2\pi F(2\pi k).\]

In [21]:

Import a handy function to do radial binning
from powerbox import angular_average

Do the forward transform
k_field,k,rk = fft(field,L=L,a=0,b=2*np.pi, ret_cubegrid=True)

Do the inverse transform, ensuring the boxsize is correct
mod_field,modx,modr = ifft(k_field,Lk=-2*k.min(),a=0,b=1, ret_cubegrid=True)

mod_field, bins = angular_average(mod_field, modr, 300)

plt.plot(bins,mod_field, label="Numerical",lw=3,ls='--')
plt.plot(bins,np.exp(-np.pi*(bins/(2*np.pi))**2)/(2*np.pi),label="Analytic")
plt.legend()
plt.yscale('log')
plt.xscale('log')
plt.ylim(1e-7,3)
plt.show()

[image: ../_images/demos_dft_18_0.png]

Using Different Conventions in Powerbox

These fourier-transform wrappers are used inside powerbox to do the
heavy lifting. That means that one can pass a power spectrum which has
been defined with arbitrary conventions, and receive a fully consistent
box back.

Let’s say, for example, that the fourier convention in your field was to
use \((a,b)=(0,1)\), so that the power spectrum of a 2D field,
\(\delta_x\) was given by

\[P(k) = \frac{1}{2\pi} \int \delta_x e^{-ikx} d^2x.\]

We now wish to create a realisation with a power spectrum following
these conventions. Let’s say the power spectrum is
\(P(k) = 0.1k^{-2}\).

In [39]:

from powerbox import PowerBox

pb = PowerBox(N=512,dim=2,pk = lambda k : 0.1*k**-3.,
 a=0, b=1, # Set the Fourier convention
 boxlength=50.0 # Has units of inverse k
)

plt.imshow(pb.delta_x,extent=(0,50,0,50))
plt.colorbar()
plt.show()

[image: ../_images/demos_dft_21_0.png]

When we check the power spectrum, we also have to remember to set the
Fourier convention accordingly:

In [40]:

from powerbox import get_power

power, kbins = get_power(pb.delta_x,pb.boxlength, a= 0,b =1)

plt.plot(kbins,power,label="Numerical")
plt.plot(kbins,0.1*kbins**-3.,label="Analytic")
plt.legend()
plt.xscale('log')
plt.yscale('log')
plt.show()

[image: ../_images/demos_dft_23_0.png]

License

Copyright (c) 2016 Steven Murray

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Changelog

v0.5.3 [22 May 2018]

Bugfixes
- Fixed a bug introduced in v0.5.1 where using bin_ave=False in angular_average_nd would fail.

v0.5.2 [17 May 2018]

Enhancements
- Added ability to calculate the variance of an angularly averaged quantity.
- Removed a redundant calculation of the bin weights in angular_average

Internals
- Updated version numbers of dev requirements.

v0.5.1 [4 May 2018]

Enhancements
- Added ability to not have dimensionless power spectra from get_power.
- Also return linearly-spaced radial bin edges from angular_average_nd
- Python 3 compatibility

Bugfixes
- Fixed bug where field was modified in-place unexpectedly in angular_average
- Now correctly flattens weights before getting the field average in angular_average_nd

v0.5.0 [7 Nov 2017]

Features
- Input boxes to get_power no longer need to have same length on every dimension.
- New angular_average_nd function to average over first n dimensions of an array.

Enhancements
- Huge (5x or so) speed-up for angular_average function (with resulting speedup for get_power).
- Huge memory reduction in fft/ifft routines, with potential loss of some speed (TODO: optimise)
- Better memory consumption in PowerBox classes, at the expense of an API change (cached properties no

longer cached, or properties).

	Modified fftshift in dft to handle astropy Quantity objects (bit of a hack really)

Bugfixes
- Fixed issue where if the boxlength was passed as an integer (to fft/ifft), then incorrect results occurred.
- Fixed issue where incorrect first_edge assignment in get_power resulted in bad power spectrum. No longer require this arg.

v0.4.3 [29 March 2017]

Bugfixes
- Fixed volume normalisation in get_power.

v0.4.2 [28 March 2017]

Features
- Added ability to cross-correlate boxes in get_power.

v0.4.1

Bugfixes
- Fixed cubegrid return value for dft functions when input boxes have different sizes on each dimension.

v0.4.0

Features
- Added fft/ifft wrappers which consistently return fourier transforms with arbitrary Fourier conventions.
- Boxes now may be composed with arbitrary Fourier conventions.
- Documentation!

Enhancements
- New test to compare LogNormalPowerBox with standard PowerBox.
- New project structure to make for easier location of functions.
- Code quality improvements
- New tests, better coverage.

Bugfixes
- Fixed incorrect boxsize for an odd number of cells
- Ensure mean density is correct in LogNormalPowerBox

v0.3.2

Bugfixes
- Fixed bug in pyFFTW cache setting

v0.3.1

Enhancements
- New interface with pyFFTW to make fourier transforms ~twice as fast. No difference to the API.

v0.3.0

Features
- New functionality in get_power function to measure power-spectra of discrete samples.

Enhancements
- Added option to not store discrete positions in class (just return them)
- get_power now more streamlined and intuitive in its API

v0.2.3 [11 Jan 2017]

Enhancements
- Improved estimation of power (in get_power) for lowest k bin.

v0.2.2 [11 Jan 2017]

Bugfixes
- Fixed a bug in which the output power spectrum was a factor of sqrt(2) off in normalisation

v0.2.1 [10 Jan 2017]

Bugfixes
- Fixed output of create_discrete_sample when not randomising positions.

Enhancements
- New option to set bounds of discrete particles to (0, boxlength) rather than centring at 0.

v0.2.0 [10 Jan 2017]

Features
- New LogNormalPowerBox class for creating log-normal fields

Enhancements
- Restructuring of code for more flexibility after creation. Now requires cached_property package.

v0.1.0 [27 Oct 2016]

First working version. Only Gaussian fields working.

API Summary

	powerbox.powerbox

	The main module of powerbox.

	powerbox.tools

	A set of tools for dealing with structured boxes, such as those output by powerbox.

	powerbox.dft

	A module defining some “nicer” fourier transform functions.

powerbox.powerbox

The main module of powerbox. Provides classes to create structured boxes.

Classes

	LogNormalPowerBox(*args, **kwargs)

	A subclass of PowerBox which calculates Log-Normal density fields with given power spectra.

	PowerBox(N, pk[, dim, boxlength, …])

	An object which calculates and stores the real-space and fourier-space fields generated with a given power spectrum.

powerbox.powerbox.LogNormalPowerBox

	
class powerbox.powerbox.LogNormalPowerBox(*args, **kwargs)

	A subclass of PowerBox which calculates Log-Normal density fields with given power spectra.

See the documentation of PowerBox for a detailed explanation of the arguments, as this class
has exactly the same arguments.

This class calculates an (over-)density field of arbitrary dimension given an input isotropic power spectrum. In
this case, the field has a log-normal distribution of over-densities, always yielding a physically valid field.

Examples

To create a log-normal over-density field:

>>> from powerbox import LogNormalPowerBox
>>> lnpb = LogNormalPowerBox(100,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> overdensities = lnpb.delta_x
>>> grid = lnpb.x
>>> radii = lnpb.r

To plot the overdensities:

>>> import matplotlib.pyplot as plt
>>> plt.imshow(pb.delta_x)

Compare the fields from a Gaussian and Lognormal realisation with the same power:

>>> lnpb = LogNormalPowerBox(300,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> pb = PowerBox(300,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> fig,ax = plt.subplots(2,1,sharex=True,sharey=True,figsize=(12,5))
>>> ax[0].imshow(lnpb.delta_x,aspect="equal",vmin=-1,vmax=lnpb.delta_x.max())
>>> ax[1].imshow(pb.delta_x,aspect="equal",vmin=-1,vmax = lnpb.delta_x.max())

To create and plot a discrete version of the field:

>>> positions = lnpb.create_discrete_sample(nbar=1000.0, # Number density in terms of boxlength units
>>> randomise_in_cell=True)
>>> plt.scatter(positions[:,0],positions[:,1],s=2,alpha=0.5,lw=0)

Methods

	__init__(*args, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

	correlation_array()

	The correlation function from the input power, on the grid

	create_discrete_sample(nbar[, …])

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample of tracers of the underlying density distribution.

	delta_k()

	A realisation of the delta_k, i.e.

	delta_x()

	The real-space over-density field, from the input power spectrum

	gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

	gaussian_correlation_array()

	The correlation function required for a Gaussian field to produce the input power on a lognormal field

	gaussian_power_array()

	The power spectrum required for a Gaussian field to produce the input power on a lognormal field

	k()

	The entire grid of wavenumber magitudes

	power_array()

	The Power Spectrum (volume normalised) at self.k

Attributes

	kvec

	The vector of wavenumbers along a side

	r

	The radial position of every point in the grid

	x

	The co-ordinates of the grid along a side

powerbox.powerbox.LogNormalPowerBox.__init__

	
LogNormalPowerBox.__init__(*args, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

powerbox.powerbox.LogNormalPowerBox.correlation_array

	
LogNormalPowerBox.correlation_array()

	The correlation function from the input power, on the grid

powerbox.powerbox.LogNormalPowerBox.create_discrete_sample

	
LogNormalPowerBox.create_discrete_sample(nbar, randomise_in_cell=True, min_at_zero=False, store_pos=False, seed=None)

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample
of tracers of the underlying density distribution.

	Parameters

	
	nbarfloat

	Mean tracer density within the box.

powerbox.powerbox.LogNormalPowerBox.delta_k

	
LogNormalPowerBox.delta_k()

	A realisation of the delta_k, i.e. the gaussianised square root of the unitless power spectrum
(i.e. the Fourier co-efficients)

powerbox.powerbox.LogNormalPowerBox.delta_x

	
LogNormalPowerBox.delta_x()

	The real-space over-density field, from the input power spectrum

powerbox.powerbox.LogNormalPowerBox.gauss_hermitian

	
LogNormalPowerBox.gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

powerbox.powerbox.LogNormalPowerBox.gaussian_correlation_array

	
LogNormalPowerBox.gaussian_correlation_array()

	The correlation function required for a Gaussian field to produce the input power on a lognormal field

powerbox.powerbox.LogNormalPowerBox.gaussian_power_array

	
LogNormalPowerBox.gaussian_power_array()

	The power spectrum required for a Gaussian field to produce the input power on a lognormal field

powerbox.powerbox.LogNormalPowerBox.k

	
LogNormalPowerBox.k()

	The entire grid of wavenumber magitudes

powerbox.powerbox.LogNormalPowerBox.power_array

	
LogNormalPowerBox.power_array()

	The Power Spectrum (volume normalised) at self.k

powerbox.powerbox.LogNormalPowerBox.kvec

	
LogNormalPowerBox.kvec

	The vector of wavenumbers along a side

powerbox.powerbox.LogNormalPowerBox.r

	
LogNormalPowerBox.r

	The radial position of every point in the grid

powerbox.powerbox.LogNormalPowerBox.x

	
LogNormalPowerBox.x

	The co-ordinates of the grid along a side

powerbox.powerbox.PowerBox

	
class powerbox.powerbox.PowerBox(N, pk, dim=2, boxlength=1.0, ensure_physical=False, a=1.0, b=1.0, vol_normalised_power=True, seed=None)

	An object which calculates and stores the real-space and fourier-space fields generated with a given power
spectrum.

	Parameters

	
	Nint

	Number of grid-points on a side for the resulting box (equivalently, number of wavenumbers to use).

	pkfunc

	A function of a single (vector) variable k, which is the isotropic power spectrum. The relationship of the
k of which this is a function to the real-space co-ordinates is determined by the parameters a,b.

	dimint, default 2

	Number of dimensions of resulting box.

	boxlengthfloat, default 1.0

	Length of the final signal on a side. This may have arbitrary units, so long as pk is a function of a
variable which has the inverse units.

	ensure_physicalbool, optional

	Interpreting the power spectrum as a spectrum of density fluctuations, the minimum physical value of the
real-space field, delta_x(), is -1. With ensure_physical set to True, delta_x() is
clipped to return values >-1. If this is happening a lot, consider using a log-normal box.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults define the standard
usage in cosmology (for example, as defined in Cosmological Physics, Peacock, 1999, pg. 496.). Standard
numerical usage (eg. numpy) is (a,b) = (0,2pi).

	vol_weighted_powerbool, optional

	Whether the input power spectrum, pk, is volume-weighted. Default True because of standard cosmological
usage.

Notes

A number of conventions need to be listed.

The conventions of using x for “real-space” and k for “fourier space” arise from cosmology, but this does
not affect anything – x could just as well stand for “time domain” and k for “frequency domain”.

The important convention is the relationship between x and k, or in other words, whether k is interpreted
as an angular frequency or ordinary frequency. By default, because of cosmological conventions, k is an
angular frequency, so that the fourier transform integrand is delta_k*exp(-ikx). The conventions can be changed
arbitrarily by setting the a,b parameters, in line with Mathematica’s definition.

The primary quantity of interest is delta_x, which is a zero-mean Gaussian field with a power spectrum
equivalent to that which was input. Being zero-mean enables its direct interpretation as an overdensity
field, and this interpretation is enforced in the make_discrete_sample method.

Examples

To create a 3-dimensional box of gaussian over-densities, with side length 1 Mpc, gridded equally into
100 bins, and where k=2pi/x, with a power-law power spectrum, simply use

>>> pb = PowerBox(100,lambda k : 0.1*k**-3., dim=3, boxlength=100.0)
>>> overdensities = pb.delta_x
>>> grid = pb.x
>>> radii = pb.r

To create a 2D turbulence structure, with arbitrary units, once can use

>>> import matplotlib.pyplot as plt
>>> pb = PowerBox(1000, lambda k : k**-7./5.)
>>> plt.imshow(pb.delta_x)

Methods

	__init__(N, pk[, dim, boxlength, …])

	x.__init__(…) initializes x; see help(type(x)) for signature

	create_discrete_sample(nbar[, …])

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample of tracers of the underlying density distribution.

	delta_k()

	A realisation of the delta_k, i.e.

	delta_x()

	The realised field in real-space from the input power spectrum

	gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

	k()

	The entire grid of wavenumber magitudes

	power_array()

	The Power Spectrum (volume normalised) at self.k

Attributes

	kvec

	The vector of wavenumbers along a side

	r

	The radial position of every point in the grid

	x

	The co-ordinates of the grid along a side

powerbox.powerbox.PowerBox.__init__

	
PowerBox.__init__(N, pk, dim=2, boxlength=1.0, ensure_physical=False, a=1.0, b=1.0, vol_normalised_power=True, seed=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

powerbox.powerbox.PowerBox.create_discrete_sample

	
PowerBox.create_discrete_sample(nbar, randomise_in_cell=True, min_at_zero=False, store_pos=False, seed=None)

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample
of tracers of the underlying density distribution.

	Parameters

	
	nbarfloat

	Mean tracer density within the box.

powerbox.powerbox.PowerBox.delta_k

	
PowerBox.delta_k()

	A realisation of the delta_k, i.e. the gaussianised square root of the power spectrum (i.e. the Fourier co-efficients)

powerbox.powerbox.PowerBox.delta_x

	
PowerBox.delta_x()

	The realised field in real-space from the input power spectrum

powerbox.powerbox.PowerBox.gauss_hermitian

	
PowerBox.gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

powerbox.powerbox.PowerBox.k

	
PowerBox.k()

	The entire grid of wavenumber magitudes

powerbox.powerbox.PowerBox.power_array

	
PowerBox.power_array()

	The Power Spectrum (volume normalised) at self.k

powerbox.powerbox.PowerBox.kvec

	
PowerBox.kvec

	The vector of wavenumbers along a side

powerbox.powerbox.PowerBox.r

	
PowerBox.r

	The radial position of every point in the grid

powerbox.powerbox.PowerBox.x

	
PowerBox.x

	The co-ordinates of the grid along a side

powerbox.tools

A set of tools for dealing with structured boxes, such as those output by powerbox. Tools include those
for averaging a field isotropically, and generating the isotropic power spectrum.

Functions

	angular_average(field, coords, bins[, …])

	Perform a radial histogram – averaging within radial bins – of a field.

	angular_average_nd(field, coords, bins[, n, …])

	Take an ND box, and perform a radial average over the first n dimensions.

	get_power(deltax, boxlength[, deltax2, N, …])

	Calculate the isotropic power spectrum of a given field.

powerbox.tools.angular_average

	
powerbox.tools.angular_average(field, coords, bins, weights=1, average=True, bin_ave=True, get_variance=False)

	Perform a radial histogram – averaging within radial bins – of a field.

	Parameters

	
	fieldarray

	An array of arbitrary dimension specifying the field to be angularly averaged.

	coordsarray

	The magnitude of the co-ordinates at each point of field. Must be the same size as field.

	binsfloat or array.

	The bins argument provided to histogram. Can be an int or array specifying bin edges.

	weightsarray, optional

	An array of the same shape as field, giving a weight for each entry.

	averagebool, optional

	Whether to take the (weighted) average. If False, returns the (unweighted) sum.

	bin_avebool, optional

	Whether to return the bin co-ordinates as the (weighted) average of cells within the bin (if True), or
the linearly spaced edges of the bins.

	get_variancebool, optional

	Whether to also return an estimate of the variance of the power in each bin.

	Returns

	
	field_1darray

	The field averaged angularly (finally 1D)

	binavgarray

	The mean co-ordinate in each radial bin.

	vararray

	The variance of the averaged field, estimated from the mean standard error. Only returned if get_variance is
True.

Notes

If desired, the variance is calculated as the weight unbiased variance, using the formula at
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Reliability_weights for the variance in each cell, and
normalising by a factor of \(V_2/V_1^2\) to estimated the variance of the average.

Examples

Create a 3D radial function, and average over radial bins:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-5,5,128) # Setup a grid
>>> X,Y,Z = np.meshgrid(x,x,x) # ""
>>> r = np.sqrt(X**2+Y**2+Z**2) # Get the radial co-ordinate of grid
>>> field = np.exp(-r**2) # Generate a radial field
>>> avgfunc, bins = angular_average(field,r,bins=100) # Call angular_average
>>> plt.plot(bins, np.exp(-bins**2), label="Input Function") # Plot input function versus ang. avg.
>>> plt.plot(bins, avgfunc, label="Averaged Function")

powerbox.tools.angular_average_nd

	
powerbox.tools.angular_average_nd(field, coords, bins, n=None, weights=1, average=True, bin_ave=True, get_variance=False)

	Take an ND box, and perform a radial average over the first n dimensions.

	Parameters

	
	fieldarray

	An array of arbitrary dimension specifying the field to be angularly averaged.

	coordslist of arrays

	A list with length equal to the number of dimensions of field. Each entry should be an
array specifying the co-ordinates in the corresponding dimension of field. Note this
is different from angular_average().

	binsint or array.

	Specifies the bins for the averaged dimensions. Can be an int or array specifying bin edges.

	nint, optional

	The number of dimensions to be averaged. By default, all dimensions are averaged. Always uses
the first n dimensions.

	weightsarray, optional

	An array of the same shape as the first n dimensions of field, giving a weight for each entry.

	averagebool, optional

	Whether to take the (weighted) average. If False, returns the (unweighted) sum.

	bin_avebool, optional

	Whether to return the bin co-ordinates as the (weighted) average of cells within the bin (if True), or
the linearly spaced edges of the bins

	get_variancebool, optional

	Whether to also return an estimate of the variance of the power in each bin.

	Returns

	
	field_1darray

	The field averaged angularly (finally 1D)

	binsarray

	The mean co-ordinate in each radial bin (or the bin edges, if bin_ave is False)

Examples

Create a 3D radial function, and average over radial bins. Equivalent to calling angular_average():

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-5,5,128) # Setup a grid
>>> X,Y,Z = np.meshgrid(x,x,x) # ""
>>> r = np.sqrt(X**2+Y**2+Z**2) # Get the radial co-ordinate of grid
>>> field = np.exp(-r**2) # Generate a radial field
>>> avgfunc, bins, _ = angular_average_nd(field,[x,x,x],bins=100) # Call angular_average
>>> plt.plot(bins, np.exp(-bins**2), label="Input Function") # Plot input function versus ang. avg.
>>> plt.plot(bins, avgfunc, label="Averaged Function")

Create a 2D radial function, extended to 3D, and average over first 2 dimensions:

>>> r = np.sqrt(X**2+Y**2)
>>> field = np.exp(-r**2) # 2D field
>>> field = np.repeat(field,len(x)).reshape((len(x),)*3) # Extended to 3D
>>> avgfunc, avbins, coords = angular_average_nd(field, [x,x,x], bins=50, n=2)
>>> plt.plot(avbins, np.exp(-avbins**2), label="Input Function")
>>> plt.plot(avbins, avgfunc[:,0], label="Averaged Function")

powerbox.tools.get_power

	
powerbox.tools.get_power(deltax, boxlength, deltax2=None, N=None, a=1.0, b=1.0, remove_shotnoise=True, vol_normalised_power=True, bins=None, res_ndim=None, weights=None, weights2=None, dimensionless=True, bin_ave=True, get_variance=False)

	Calculate the isotropic power spectrum of a given field.

	Parameters

	
	deltaxarray-like

	The field to calculate the power spectrum of. Can either be arbitrarily n-dimensional, or 2-dimensional with the
first being the number of spatial dimensions, and the second the positions of discrete particles in the field.
The former should represent a density field, while the latter
is a discrete sampling of a field. This function chooses which to use by checking the value of N (see below).
Note that if a discrete sampling is used, the power spectrum calculated is the
“overdensity” power spectrum, i.e. the field re-centered about zero and rescaled by the mean.

	boxlengthfloat or list of floats

	The length of the box side(s) in real-space.

	deltax2array-like

	If given, a box of the same shape as deltax, against which deltax will be cross correlated.

	Nint, optional

	The number of grid cells per side in the box. Only required if deltax is a discrete sample. If given,
the function will assume a discrete sample.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults define the standard
usage in cosmology (for example, as defined in Cosmological Physics, Peacock, 1999, pg. 496.). Standard
numerical usage (eg. numpy) is (a,b) = (0,2pi).

	remove_shotnoisebool, optional

	Whether to subtract a shot-noise term after determining the isotropic power. This only affects discrete samples.

	vol_weighted_powerbool, optional

	Whether the input power spectrum, pk, is volume-weighted. Default True because of standard cosmological
usage.

	binsint or array, optional

	Defines the final k-bins output. If None, chooses a number based on the input resolution of the box. Otherwise,
if int, this defines the number of kbins, or if an array, it defines the exact bin edges.

	res_ndimint, optional

	Only perform angular averaging over first res_ndim dimensions. By default, uses all dimensions.

	weights, weights2array-like, optional

	If deltax is a discrete sample, these are weights for each point.

	dimensionless: bool, optional

	Whether to normalise the cube by its mean prior to taking the power.

	bin_avebool, optional

	Whether to return the bin co-ordinates as the (weighted) average of cells within the bin (if True), or
the linearly spaced edges of the bins

	get_variancebool, optional

	Whether to also return an estimate of the variance of the power in each bin.

	Returns

	
	p_karray

	The power spectrum averaged over bins of equal |k|.

	meankarray

	The bin-centres for the p_k array (in k). This is the mean k-value for cells in that bin.

	vararray

	The variance of the power spectrum, estimated from the mean standard error. Only returned if get_variance is
True.

Examples

One can use this function to check whether a box created with PowerBox has the correct
power spectrum:

>>> from powerbox import PowerBox
>>> import matplotlib.pyplot as plt
>>> pb = PowerBox(250,lambda k : k**-2.)
>>> p,k = get_power(pb.delta_x,pb.boxlength)
>>> plt.plot(k,p)
>>> plt.plot(k,k**-2.)
>>> plt.xscale('log')
>>> plt.yscale('log')

powerbox.dft

A module defining some “nicer” fourier transform functions.

We define only two functions – an arbitrary-dimension forward transform, and its inverse. In each case, the transform
is designed to replicate the continuous transform. That is, the transform is volume-normalised and obeys correct
Fourier conventions.

The actual FFT backend is provided by pyFFTW if it is installed, which provides a significant speedup, and
multi-threading.

Notes

Conveniently, we allow for arbitrary Fourier convention, according to the scheme in
http://mathworld.wolfram.com/FourierTransform.html. That is, we define the forward and inverse n-dimensional
transforms respectively as

\[F(k) = \sqrt{\frac{|b|}{(2\pi)^{1-a}}}^n \int f(r) e^{-i b\mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r}\]

and

\[f(r) = \sqrt{\frac{|b|}{(2\pi)^{1+a}}}^n \int F(k) e^{+i b\mathbf{k}\cdot\mathbf{r}} d^n \mathbf{k}.\]

In both transforms, the corresponding co-ordinates are returned so a completely consistent transform is simple to get.
This makes switching from standard frequency to angular frequency very simple.

We note that currently, only positive values for b are implemented (in fact, using negative b is consistent, but
one must be careful that the frequencies returned are descending, rather than ascending).

Functions

	fft(X[, L, Lk, a, b, axes, ret_cubegrid])

	Arbitrary-dimension nice Fourier Transform.

	fftfreq(N[, d, b])

	Return the fourier frequencies for a box with N cells, using general Fourier convention.

	fftshift(x, *args, **kwargs)

	

	ifft(X[, Lk, L, a, b, axes, ret_cubegrid])

	Arbitrary-dimension nice inverse Fourier Transform.

	ifftshift(x, *args, **kwargs)

	

powerbox.dft.fft

	
powerbox.dft.fft(X, L=None, Lk=None, a=0, b=6.283185307179586, axes=None, ret_cubegrid=False)

	Arbitrary-dimension nice Fourier Transform.

This function wraps numpy’s fftn and applies some nice properties. Notably, the returned fourier transform
is equivalent to what would be expected from a continuous Fourier Transform (including normalisations etc.). In
addition, arbitrary conventions are supported (see powerbox.dft for details).

Default parameters return exactly what numpy.fft.fftn would return.

The output object always has the zero in the centre, with monotonically increasing spectral arguments.

	Parameters

	
	Xarray

	An array with arbitrary dimensions defining the field to be transformed. Should correspond exactly
to the continuous function for which it is an analogue. A lower-dimensional transform can be specified by using
the axes argument.

	Lfloat or array-like, optional

	The length of the box which defines X. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions. The default
returns the un-normalised DFT (same as numpy).

	Lkfloat or array-like, optional

	The length of the fourier-space box which defines the dual of X. Only one of L/Lk needs to be provided. If
provided, L takes precedence. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults return the standard DFT
as defined in numpy.fft.

	axessequence of ints, optional

	The axes to take the transform over. The default is to use all axes for the transform.

	ret_cubegridbool, optional

	Whether to return the entire grid of frequency magnitudes.

	Returns

	
	ftarray

	The DFT of X, normalised to be consistent with the continuous transform.

	freqlist of arrays

	The frequencies in each dimension, consistent with the Fourier conventions specified.

	gridarray

	Only returned if ret_cubegrid is True. An array with shape given by axes specifying the magnitude
of the frequencies at each point of the fourier transform.

powerbox.dft.fftfreq

	
powerbox.dft.fftfreq(N, d=1.0, b=6.283185307179586)

	Return the fourier frequencies for a box with N cells, using general Fourier convention.

	Parameters

	
	Nint

	The number of grid cells

	dfloat, optional

	The interval between cells

	bfloat, optional

	The fourier-convention of the frequency component (see powerbox.dft for details).

	Returns

	
	freqarray

	The N symmetric frequency components of the Fourier transform. Always centred at 0.

powerbox.dft.fftshift

	
powerbox.dft.fftshift(x, *args, **kwargs)

	

powerbox.dft.ifft

	
powerbox.dft.ifft(X, Lk=None, L=None, a=0, b=6.283185307179586, axes=None, ret_cubegrid=False)

	Arbitrary-dimension nice inverse Fourier Transform.

This function wraps numpy’s ifftn and applies some nice properties. Notably, the returned fourier transform
is equivalent to what would be expected from a continuous inverse Fourier Transform (including normalisations etc.).
In addition, arbitrary conventions are supported (see powerbox.dft for details).

Default parameters return exactly what numpy.fft.ifftn would return.

	Parameters

	
	Xarray

	An array with arbitrary dimensions defining the field to be transformed. Should correspond exactly
to the continuous function for which it is an analogue. A lower-dimensional transform can be specified by using
the axes argument. Note that this should have its zero in the center.

	Lkfloat or array-like, optional

	The length of the box which defines X. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions. The default
returns the un-normalised DFT (the same as numpy).

	Lfloat or array-like, optional

	The length of the real-space box, defining the dual of X. Only one of Lk/L needs to be passed. If L is
passed, it is used. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions. The default
of Lk=1 returns the un-normalised DFT.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults return the standard DFT
as defined in numpy.fft.

	axessequence of ints, optional

	The axes to take the transform over. The default is to use all axes for the transform.

	ret_cubegridbool, optional

	Whether to return the entire grid of real-space co-ordinate magnitudes.

	Returns

	
	ftarray

	The IDFT of X, normalised to be consistent with the continuous transform.

	freqlist of arrays

	The real-space co-ordinate grid in each dimension, consistent with the Fourier conventions specified.

	gridarray

	Only returned if ret_cubegrid is True. An array with shape given by axes specifying the magnitude
of the real-space co-ordinates at each point of the inverse fourier transform.

powerbox.dft.ifftshift

	
powerbox.dft.ifftshift(x, *args, **kwargs)

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 powerbox	

 	
 	
 powerbox.dft	

 	
 	
 powerbox.powerbox	

 	
 	
 powerbox.tools	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | K
 | L
 | P
 | R
 | X

_

 	
 	__init__() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

A

 	
 	angular_average() (in module powerbox.tools)

 	
 	angular_average_nd() (in module powerbox.tools)

C

 	
 	correlation_array() (powerbox.powerbox.LogNormalPowerBox method)

 	
 	create_discrete_sample() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

D

 	
 	delta_k() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	
 	delta_x() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

F

 	
 	fft() (in module powerbox.dft)

 	
 	fftfreq() (in module powerbox.dft)

 	fftshift() (in module powerbox.dft)

G

 	
 	gauss_hermitian() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	
 	gaussian_correlation_array() (powerbox.powerbox.LogNormalPowerBox method)

 	gaussian_power_array() (powerbox.powerbox.LogNormalPowerBox method)

 	get_power() (in module powerbox.tools)

I

 	
 	ifft() (in module powerbox.dft)

 	
 	ifftshift() (in module powerbox.dft)

K

 	
 	k() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	
 	kvec (powerbox.powerbox.LogNormalPowerBox attribute)

 	(powerbox.powerbox.PowerBox attribute)

L

 	
 	LogNormalPowerBox (class in powerbox.powerbox)

P

 	
 	power_array() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	PowerBox (class in powerbox.powerbox)

 	
 	powerbox.dft (module)

 	powerbox.powerbox (module)

 	powerbox.tools (module)

R

 	
 	r (powerbox.powerbox.LogNormalPowerBox attribute)

 	(powerbox.powerbox.PowerBox attribute)

X

 	
 	x (powerbox.powerbox.LogNormalPowerBox attribute)

 	(powerbox.powerbox.PowerBox attribute)

 _images/demos_dft_18_0.png
100 == Numerical
— Analytic

10
102
107
10

10

10

107

10 10° 10

_images/demos_dft_21_0.png

_images/demos_dft_13_1.png
150 -100 -50 0 50

_images/demos_dft_15_0.png

_images/demos_dft_8_0.png

_images/demos_getting_started_13_0.png

_images/demos_dft_23_0.png
100

100
10
102
10
104
10
100

107

— Numerical
— Aaalytic

_images/demos_dft_6_1.png

_images/demos_getting_started_17_0.png
10

08

06

04

02

00

00

02

0

3

08

10

00

02

04

0%

08

10

_images/demos_getting_started_24_0.png
107

10

107

10

Input Pover
Normal Field Pomer
Normal Sample Power
Log-Normal Field Pover
Log-Normal Sample Power

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 powerbox

 		
 Examples

 		
 Getting Started with Powerbox

 		
 Create a 2D Gaussian field with power-law power-spectrum

 		
 Create a 2D Log-Normal field with power-law power spectrum

 		
 Create some discrete samples on the field

 		
 Check the power-spectrum of the field

 		
 Create a log-normal mock dark-matter distribution

 		
 Changing Fourier Conventions

 		
 Doing the DFT right.

 		
 Using Different Conventions in Powerbox

 		
 License

 		
 Changelog

 		
 v0.5.3 [22 May 2018]

 		
 v0.5.2 [17 May 2018]

 		
 v0.5.1 [4 May 2018]

 		
 v0.5.0 [7 Nov 2017]

 		
 v0.4.3 [29 March 2017]

 		
 v0.4.2 [28 March 2017]

 		
 v0.4.1

 		
 v0.4.0

 		
 v0.3.2

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.3 [11 Jan 2017]

 		
 v0.2.2 [11 Jan 2017]

 		
 v0.2.1 [10 Jan 2017]

 		
 v0.2.0 [10 Jan 2017]

 		
 v0.1.0 [27 Oct 2016]

 		
 API Summary

 		
 powerbox.powerbox

 		
 powerbox.powerbox.LogNormalPowerBox

 		
 powerbox.powerbox.PowerBox

 		
 powerbox.tools

 		
 powerbox.tools.angular_average

 		
 powerbox.tools.angular_average_nd

 		
 powerbox.tools.get_power

 		
 powerbox.dft

 		
 Notes

_images/demos_getting_started_9_0.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_images/demos_getting_started_7_0.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down.png

_images/demos_cosmological_fields_11_0.png

_images/demos_cosmological_fields_13_0.png
10°

107

100

102

10

10

— Input Power
—— Sampled Power Discrete

w7 w0 100 00 e 10

_images/demos_cosmological_fields_9_0.png

_images/demos_cosmological_fields_5_0.png

_images/demos_cosmological_fields_7_0.png
10 — Input Power

—— Sampled Power
107
100
102

10

10

w7 w0 100 00 e 10

